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Abstract-The plane elastostatic problem for two bonded half planes containing an arbitrarily
oriented crack in the neighborhood of the interface is considered. Using Mellin Transforms
the problem is formulated as a system of singular integral equations. The equations are solved
for various crack orientations, material combinations, and external loads. The numerical
results given in the paper include the stress intensity factors, the strain energy release rates,
and the probable cleavage angles giving the direction of crack propagation.

1. INTRODUCTION

The structural stength of composite materials is controlled to a considerable extent by the
size, shape, orientation, and distribution of the flaws and imperfections which exist in the
material. Usually these flaws and imperfections exhibit themselves in the form of entrapped
gas or weak impurities on the interface, ruptured bonds, cracks, inclusions, and geometric
singularities arising from the particular shape of the constituent materials. From the view
point of fracture initiation and propagation in the medium particularly important are the
manufacturing flaws such as flat cavities which develop during bonding or casting, small
cracks resulting from the residual stresses, and fatigue cracks caused by the cyclic nature of
the external loads. Thus, in studies relating to the fracture initiation and propagation in
the material, it is necessary to have a good estimate of those factors representing the severity
of the external loads in the neighborhood of the" isolated dominant flaw". Generally,
the comparison of these factors (such as the stress intensity factors, the strain energy release
rate, the crack opening stretch, or the cleavage stress at a characteristic distance from
the flaw boundary) with the corresponding characteristic constant representing the resis
tance of the material to fracture constitutes the fracture criterion. If the dominant imper
fection is completely imbedded in a homogeneous phase and is located sufficiently far from
the phase boundaries or interfaces, then the disturbance of the stress field around the
imperfection will not be affected by the neighboring phases and the disturbed stress field may
be obtained by solving the problem for an infinite homogeneous solid. On the other hand if
the flaw is located near a phase boundary or a biomaterial interface, then the solution of the
problem for the nonhomogeneous medium becomes necessary.

An up-to-date review of the available solutions for variety of crack and inclusion geomet
ries in composite materials may be found in [1]. The primary interest of this paper is in the
evaluation of the disturbed stress field around a crack located near a biomaterial interface or,
as a limiting special case, free boundary. The problem was studied in a previous series of
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papers for two special crack orientations, namely the case of a crack located parallel to or at
the interface [2-6] and the problem of a crack perpendicular to and crossing the interface
[7, 8]. In this paper we will assume that the orientation of the crack with respect to the
interface (i.e. the angle 00 and the distance d in Fig. I) is arbitrary and the problem is one
of plane strain or generalized plane stress. As in the previous studies it will also be assumed

o

Fig. I. Notation for the inclined crack.

that the interface in the non-homogeneous medium is either a plane or has a sufficiently
large radius of curvature so that the disturbed stress field can be approximated by that of a
crack in two bonded elastic half'planes (Fig. I). Even though the problem will be formulated
and solved for the bonded half planes, the technique described in the paper appears to be
quite general and may be used to treat the problem of any number of bonded wedges with
radial cracks.

2. THE INTEGRAL EQUATIONS OF THE PROBLEM

Using the conventional superposition technique the solution of the problem of a traction
free crack in the composite medium under a given set of external loads can be expressed as
the sum of two solutions: the first obtained for the given external loads and the given medium
without the crack, and the second obtained for the two bonded half planes with a crack
where the only external loads are the crack surface tractions which are equal and opposite
to the stresses found in the first solution on the presumed location of the crack. It is clear
that only the second solution which gives the disturbed stress field due to the existence of
the crack will have singularities. Also note that in the. second problem, since the external
loads are local and statically self-equilibrating, in the application of Mellin transforms the
regularity conditions required of the solution as r ~ 00 will be satisfied. Following now, for
example [9], in polar coordinates the plane elasticity problem for a medium having the
elastic constants Jl and K (K = 3-4v for plane strain, Ie = (3 - v)/(l + v) for plane stress) may
be formulated as

. a (lOX) .02X
o{r, 0) = 'r9 + IT09 = - or ;. 00 + I or2'
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(2a-c)

(la-c)

(3a-c)

aUr . aU8 1 { azX i aX i azx
vCr, 0) = a;: + I a;: = 2f.l - arz + rZao - ~ ar ao

1 + " [aljJ aljJ oZIjJ . Z a
ZIjJ

]}+-- -+2ir-+r--+lr -Z '
4 00 or ar 00 or

V4X = 0, VZIjJ = 0, ~ (r oljJ) = VZX.
or or

Referring to Fig. I, the medium will be considered as consisting of three infinite wedges:

n 3n n nO· fi .
1 (Ill' '(1)' 2< 0 < 2" ;2 (Ilz, "z), 00 < 0 < 2; 3 (Ilz, "z), - 2< 0 < o· For an III mte

wedge with an arbitrary angle, using the Mellin transforms to solve (2), from (1) we obtain

vIt'[rZa, s] = L(s, 0)
= 2i(s + 1)[AseiS8 + B(s + 1)ei(s+Z)8 - Be- i(s+Z)8],

vIt'[rZTrn s] = -s(s + 1)(AeiS8 + Ae- iS8)
-(s + l)(s + 4)[Bei(s+Z)8 + Be-i(s+Z)O],

vI![rzv, s] = V(s, 0)

= s + I [AseisO + B(s + l)ei(s+Z)O + "Be-i(s+Z)o],
Il

where A and B are functions of the transform variable s. The Mellin transform of a function
fer) defined and suitably regular in (0 < r < (0), and its inverse are defined by

F(s) =vIt'[j,s] = ('f(r)rS- 1 dr,

1 c+ ioo

fer) = -.J F(s)r- Sds,
2m c- ioo

(4a,b)

where c is such that rC -If(r) is absolutely integrable in (0, 00). The transform of derivatives
may be shown to be

provided

foo r" d"f(r) rs- 1 dr = (-1)" res + n) F(s),
o dr" res)

(5)

dm - 1f
rs +m - 1-- -> ° as r -> (0 (0)dr m - 1 ' ,

(m = 1, ... , n). (6)

In applications conditions (6) provide the information to determine the strip of regularity
containing the line Re(s) = c in the inversion integral.t

t It should be noted that in working with Mellin transforms up to the inversion stage in the manipulations
the transform variable s is treated as a real variable. The function F(s) is analytically extended into the
complex plane from the real line when the inversion is evaluated. In the present problem, the complex
notation in (l and 3) is used only for convenience. Thus, for example, in separating the transforms of the
stress components T r9 and T99 in (3a), s should be treated as real and A and B should be treated as complex
quantities.
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(to)

(6a,b)

(7)

(8)

(9)

(5a,b)

V2(r, 00) = v3 (r, 00), (0 s: r < a, b < r < co),
bf [112(r, 00) - v3 (r, 00)) dr = O.

a

If we now let the subscripts 1, 2, 3 stand for the wedges shown in Fig. 1. the problem must
be solved under the following boundary conditions:

O"l(r, 11.12) = 0"2(r, 11.12), (0 s: r < co),

VI (r, n12) = v2(r, 11.12), (0 s: r < co),

O"l(r, 3n12) = 0"3(r, -nI2), (0 s: r < co),

VI (r, 3n(2) = V3(r, - nI2), (0 s: r < co),

0"2(r, 00) = 0"3(r, 00), (0 s: r < co),

lim 0"2(r, 8) = pir) + ipl(r), (a < r < b),
8-80+ 0

where O"j and l1j , (j = 1,2,3) are defined by (1), J12 = J13' and note that (9) and (10) corres
pond to the condition of displacement continuity outside the crack. In the solution of the
problem as given by (3) there are six unknown (complex) functions A/s), B/s), (j = 1,2,3)
to be determined. The homogeneous conditions (5-7) provide five equations. The sixth
equation is obtained from the mixed conditions given by (8) and (9). Thus, eliminating five
of the unknown functions, the problem may be formulated as a system of dual integral
equations for two unknown real functions by using (8) and (9). However, a somewhat more
direct method to solve the problem would be its reduction to a system of singular integral
equations for a pair of real functionsft and/2 defined byt

112(r, 00 + 0) 113(r, 00 - 0) = I(r) =12(r) + ift(r), (a < r < b).

If (8) and (9) are replaced by

{
/(r), (a < r < b),

112(r, 00) - 113(r, 00) = 0, 0 b )( s: r < a, < r < co ,

(11)

(12)

and if we define
b

U(s) = Jt[r2{v2(r, 00) - v3(r, 0o)}, s] = f l(r)rS+1dr
a

b

= f [/2(r) + ift(r)]rS
+1 dr = U2(s) + iUl(s),

a

(13)

by substituting from (3) into (5-7) and (13) we obtain six linear algebraic equations in A jand
Hj , (j = 1,2,3), which may be solved giving A/s) and Hj(s) in terms of U(s). For example,
for the wedge 2 we find

A 2(s) = (1 + '(2)S(S :t)(e"<S e "tS) ([m1(s + l)se
is80

+mt(s + 1)2ei(s+2)80 se-,s(lt+80) + m2 e,(s+2)80]U2(s)

+ [ml(s + 1)(s + 2)e'S80+ m1(s + 1)2e'(S+2)80

+(s + 2)e- is(lt+80) + m2ei(s+2)90]iU1(s)},

t Note that physically11 and/z represent the densities of edge dislocations distributed along 0 = 00 in two
bonded half planes.
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B ( ) - 112 {[-m sels80
2 S - (1 + K2)(S + I)(e ins _ eins) 1

_ ml(S + I)e i(s+2)80 - e- i(s80+280+sn)]u2(S)

- [m1(s + 2)eis80 + m 1(s + l)e i (s+2)80

_ e- l(s80+280+sn)]iU
1
(s)},

m 1 = (m - 1)/(K2 m + I), m = 111/112'

m 2 = (Kl - mK2)/(KI + m).
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(14a,b)

(15)

(a < r < b), (16)

Expressions similar to (14) may be found for wedges I and 3.
All the field quantities in wedge 2 may now be obtained in terms of/(r) by substituting

from (14) into (3) and using the inversion formula. In particular, from (14), (3a), (8), and
(4b) we obtain

1 + K2 . . 1 fb
-- [p2(r) + IP1(r)] = lim - [Kir , ro, (J)!iro)

112 8-80+0 1t a

+ iK 1(r, rO ' (J)!I(rO)] dro,

c+ioo d s+1
(J) f S rO { ( 1) is(8+80)

Kir, ro , = Ins ins --;+T mls S + e
c-ioo e - e r

+ [m2 + ml(s + 1)2]ei(S8+s80+280) _ seis(8-80-n)

+ m
1
s(s + l)ei(s8+s80+28) + m

1
(s + 1)2el(s+2)(8+80)

+ (S + l)ei(S8+ 28-s80- 280-sn) + m
1
se -i(s8+28+s80)

+ m
1
(s + l)e-i(s+2)(8+80) + ei(s80+280-s8-28+sn)},

c+ioo d s+1
K ( (J) f s rO { ( 1)( 2) is(8+80)

1 r,rO' = ins ins--;+T m 1 S+ S+ e
c-ioo e - e r

+ [m 2 + m 1(s + 1)2]ei(S80+S8+280) + (S + 2)eis(8-80-n)

+ m 1(s + 1)(s + 2)ei(s8+s80+28) + m 1(s + 1)2ei(s+2)(8+80)

- (S + l)ei(S8+28-s80-280-sn) - m
1
(s + 2)e- i(S8+s80+28)

(17a,b)

In (16) the order of integrations has been changed. For (J> (Jo, since the related integrals
are uniformly convergent, this is permissible. (16) provides a system of integral equations to
determine the unknown functions It and 12. To solve this system the kernels K1 and K2
must be evaluated which may be done either by using the residue theory and expressing
them as infinite series or by reducing the integrals to real integrals and evaluating them
numerically. In either case, it is first necessary to determine the strip of regularity containing
the constant c. Let the integrands in (17) be analytically extended into the entire plane and
let the poles S j be ordered as

... < Re(L2) < Re(s-l) < Re(s+l) < Re(s+2) < .... (18)

IJSS Vol. 10 No. 6-B
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Let Re(s-1) < c < Re(s+1)' Thus, the integrals in (17) may be evaluated by closing the
contour to the left for, < '0 and to the right for, > '0 by means of semicircles of infinite
radius, and by summing the residues. Noting that for, --+ 0, tij '" 0(,-).), Re(J..) < I, and for
, --+ 00, t ij '" 0(,-«), Re(rx) ~ I, and since the residues are of the form, -(sJ+2), Sj then should
be ordered such that

Re(s_1) < -I, Re(s+l) ~ -1. (19)

Thus, Re(s-l) < Re(s) = c < -I gives the strip of regularity, S-l being the first pole to the
left of the line Re(s) = -1.

For an arbitrary value of eo, even though the residues in (17) may be evaluated without
any difficulty, the resulting infinite series cannot be summed in closed form. Hence, it is
difficult to study the singular behavior of the kernels. For this reason in this paper the
kernels will be evaluated by reducing (17) to real integrals. For this we let c = -I, s = -I +
iy, (- 00 < y < (0), and indent the contour in such a way that the pole S+l = -1 lies to
the right of the line of integration. The integrals in (17) may then be expressed as

c+ioo 00

Kk(r, '0' e) = f . Hk(s) ds = f Hi -1 + iy)i dy - lim ni(s + I)Hk(s), (k = 1,2).
C-lOO -00 5--1

(20)

(k=I,2).

Evaluating the residue at s = - I, from (17) it may be shown that

lim ni(s + I)Hk(s) = ! (m2 - m1 - 2),
S-' -1 ,

(21)

On the other hand, from (10) and (II) we have
bf !t(,o) d,o = 0, (k = 1,2).

G

(22)

Thus, when substituted into (16), the integrated terms in (20) will have no contribution. In
the remaining integral in (20) the integrand H k turns out to be the sum of an odd function
and an even functiont in y, giving K j in terms of real integrals in (0, (0). As, --+'0 these
integrals become divergent. Since the integrands are bounded at y = 0, the divergent parts
can be separated by considering the asymptotic behavior of the integrands as y --+ 00. By
defining

p = log(,o/'), e = e- eo, (23)

for small values of e from (17) and (20) it may be shown that

2 00

Kk(r, ro, e) = - f {e-eY[1 + 0(e-y(lt-211°»]sin py + O(e-Y(lt-2I1o+e»cos py} dy
r 0

(24)(0;5; eo < ~, k= 1,2),
2 p

= - 2 • 2 + Mk(r, ro, e),
, p + e

where Mk(r, ro , 0) is bounded for all values of, and '0 in the closed interval [a, b].
Substituting now from (24) into (16), separating the real and imaginary parts, and letting

e --+ 0 we obtain

t If not, it can always be put in that form.
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(i = 1,2; a < r < b), (25)1 + "2 1 fb f, [bij k( )] j' ( ) d-- pier) = - L. + ij r, ro j ro ro,
2J.l2 1l a j= 1 r log(rolr)

where the bounded kernels kij' (i, j = 1, 2) are given by

1 foo dy . 2 2 () )k ll(r, ro) = - -.-- sm py[cosh 2()oy(m1 + 4m1y cos 0 - m2
2r 0 smh ny

+ 2m1y sin 2()0 sinh 2()oY + 2e- ny
],

1 foo dy . 2 2 () )k 12(r, ro) = - -.-- [cos py smh 2()oy(4m1y cos 0 - m1 - m2
2r 0 smh ny

- 4m1y cos2 ()o sin py sinh 2()oY],

1 foo dy. 2 2 )k 21 (r, ro) = - -.-- [cos py smh 2()oy(m1 - 4m1Y cos ()o + m2
2r 0 smh ny

- 4m1y cos2 ()o sin py sinh 2()oY],

1 foo dy . 2 2 () )k 22(r, ro) = - -.-- sm py[cosh 2()oy[(m1 + 4m1Y cos 0 - m2
2r 0 smh ny

- 2m1y sin 2()0 sinh 2()oY + 2e- ny
], (a < (r, ro) < b). (26a-d)

In the system of integral equations (25) the dominant kernels have a simple Cauchy-type
singularity. This may be seen by observing that

1

r log(rolr)

1

rlog [1 + Co -1)]
1 [ oo(-O"(ro )"]-11+I-- --1

(
r o ) 1 n + 1 r

r --1
r

=_1 [1 +o(ro -1)].
ro - r r

(27)

Thus, the system of singular integral equations is of the following conventional form:

(i = 1,2; a < r < b),1 + "2 1 fb 2 [ boo ]
~ p;(r) = - I __'J_ + hij(r, ro) 1/'0) dro,

2J.l2 n a j= 1 r O - r

hij(r, rO) = kuCr, rO) + [1 ~ /) -_1_] bij ,
r og ro r ro - r

(i,j = 1,2). (28a,b)

The index of the integral equations (28) is " = 1; hence the solution will contain two arbi
trary (real) constants which are determined from the additional conditions (22).

3. SOLUTION OF THE INTEGRAL EQUATIONS AND STRESS INTENSITY
FACTORS

Referring to [10], it may be shown that the index of the system of singular integral
equations is +1 and its solution is of the following form:

her) = gi(r)[(b - r)(r - a)r1/2, (a < r < b, i = 1, 2), (29)
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where the unknown functions g;(r), (i = 1, 2) are bounded in the closed interval [a, b].
Even though, in principle, the system can be regularized and reduced to a pair of Fredholm
type integral equations, its solution may be obtained with much less computational effort
by using the technique described in [11]. In the numerical solution the main problem is the
evaluation of the kernels kij given by (26) for which in this paper a modified version of
Filon's integration formula has been used [12].

In the application of the results to fracture problems in composites, of particular interest
are the stress intensity factors and the probable plane of cleavage at a given crack tip. The
normal and shear components, k 1 and k 2 , of the stress intensity factor are defined by and
may be evaluated from the following expressions [2, 4, 5]:

k 1 (a) = lim J2(~~ r)'288(r, eo) = lim 2/12 ,./2(~----a)};(r),
r-a r~a 1 + K 2

k 1(b) =limJ2(~~- b)r288(r, eo) = --lim~J2(b~- r)};(r),
r-'a r~b 1 + K 2

k 2(a) = limJ2(a -----~)'2r8(r, eo) = lim~ J2(;-=a)!2(r),
r-a r-a 1 + K 2

k2(b) = lim J2(~=b) '2r8(r, eo) = -lim~ J2(b=~)!2(r).
r-b r-b I + K 2

(30a-d)

(31)

The constants k 1 and k 2 are a measure of the intensity of the stresses around the crack
tips. For example, at the crack tip (r = b, e= eo) the cleavage stress may be expressed as
[13]

(Jq,q,(p, <p) = ~ cos ~ (k 1 cos2~ - ~ k2 sin <p) +O(Jp),
y2p ,

where (p, <p) are the polar coordinates at the crack tip, <p being measured from the line
which is the prolongation of the crack (Fig. 1). Thus, once k 1 and k 2 are determined, for
brittle solids the probable angle <Pc of crack propagation may be postulated as the angle of
the radial plane corresponding to the maximum cleavage stress and may be determined
from o(Jq,q,/o<p = 0, and 02(Jq,q,/O<p2 < 0, or

k 2 (l - 3 cos <PJ - k 1 sin <Pc = 0,

3k2 sin <Pc - k 1 cos <Pc < O. (32a,b)

If an energy balance type criterion is used to estimate the crack propagation load, one may
need to calculate the strain energy release rate which is given in terms of k 1 and k 2 as
follows [13]:

au = 11:(1 + K) (k 2 k 2)
a 4

1+2,
ao /1

(ao = (b - a)j2). (33)

4. THE RESULTS

The material combinations, the external loads, and the geometrical configurations used in
the numerical examples are summarized in Table 1 (see Fig. 1 for the notation).
The materials roughly correspond to a metal-hard polymer combination (say, aluminum~
epoxy) (cases A, B and D) and an elastic half plane (cases C, E and F). The crack is along
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Table I. The cases considered as numerical examples

A H C D E F

A1 Az H1 Hz C. Cz D 1 Dz E. Ez F. F z

P1(r) -Po 0 -Po 0 -Po 0 -Po 0 -Po 0 -Po 0
pz(r) 0 -Po 0 -Po 0 -Po 0 -Po 0 -Po 0 -Po
E1fEz 22-22 0·045 0 22·22 0 0

Vl 0'3 0·35 0·3
1'2 0·3.5 0·3 0·35

Fixed d=2ao d=2ao d=2ao c=2ao c= 2ao eo = 40°
Variab. 80 80 80 00 80 c

577

the line (8 = 80 , a < r < b) and the distances c, d and the crack length 2ao are defined by
(Fig. 1)

2ao = b a, c = (a + b)f2, d= c cos eo- (34)

As indicated by Table 1, the results are obtained for uniform tractions

or
(a < r < b) (35a,b)

applied to the crack surface. The results are given in Table 2. The quantities k/, (i = 1, 2)
shown in the table are the stress intensity factor ratios defined by

k/(c) = ki(cj)/(Po~), (i,j = 1,2; C1 = a, C2 = b) (36)

where Po~ is the stress intensity factor in a homogeneous infinite plane with a crack of
length 2ao. The cleavage angle 4>c given in the table was obtained from (32). All results are
obtained for the plane strain caset (i.e. K j = 3 4v j , j = I, 2).

In cases A, Band C the distance d from the interface is fixed as d = 2ao and the crack
angle 80 is varied (see Fig. I). The limiting cases eo = 0 and eo = 90° of this problem were
given in [7J and [4J and were reproduced with the present computer program for verification.
Note that if the crack is in the less stiff material (i.e. £1 > £2' case A), generally there is a
reduction, and if £1 < E2 (case B and C) there is an increase in the stress intensity factors
compared to the values for the homogeneous medium.

In cases D and E the radial distance c of the crack center is fixed as c = 2ao and again eo
is varied. In case D where E11E2 = 22·22 for eo = nl2 crack becomes an interface crack for
which the closed form solution is given by (e.g. [2,3]:

0'0 - iro
fJ.(t) + ih(t) = b (t - 2iP)R(t), (I tl < 1),

III 2(1 + y)

('rUIO - iT2rO)Oo"'1l/2 = (0'0 - ho)[(t 2iP)R(t) - IJ, (Itl> 1),
'p

R(t) = (t + 1) I (t 2 _ 1)-1/2, P= .-!...log(1 + Y), Y = btfb
2

,
t - 1 2n 1 - Y

b - 112 112
1 -

112 + K 2 III III + K l ll2 '

t = (2r - b - a)/(b - a),

t See [7] for the comparison of the plane strain and the plane stress results.
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k l - ik2 = lim (f2ee _ h:2re)eo="/2 (r - b)ifJJ(r - a)(r - b)
r.... b+O r - a (b - a)/2

= (0"0 - i1:0)(1 - 2itJ)j(b- a)/2,

- (0"0 + i'fo) = Pl(r) + ipz(r),

(37)

where it should be noted that for the uniform tractions considered in (37) the stress intensity
factors at r = a and r = b are the same. It is seen that in this case the stress singularity is
oscillating in character and the definition of the stress intensity factors k l and k 2 is slightly
different. Hence, at 00 = nl2 one would not expect the stress intensity factors and the cleav
age angles to be continuous functions of 00 , The quantity which is expected to be contin
uous in 00 is the strain energy release rate given by (33) for a homogeneous medium. For
the interface crack this quantity is given by [14]

(38)

Thus, for the crack imbedded in medium 2 if we evaluate the strain energy release rate ratio
as

from (38) and

we should have

. (aU) (aU)hm - =-
80 .... "/2 oao 2 oao 12

• /2 /2 2 2 k/ + k/ 2
hm (k 1 + k 2) = - W21 = - Z = - (l + tJ)·

80 ...."/2 aZl all Po a o a21

(39)

(40)

(41)

In case D, a 21 = 3·93086, tJ = 0·13420 and the limit becomes W2 -0'51796 which is given
in Table 2. If one plots W2 vs 00 it may be seen that there is in fact a smooth transition from
the imbedded crack to the interface crack.

In case E as 00 -n12 the crack approaches the traction-free surface; hence, as shown in
the Table, the stress intensity factors tend to infinity. It should be pointed out that the
analysis given in this paper is for a crack imbedded into a homogeneous medium. In the
half plane problem for 00 = nl2 the crack disappears, there is a discontinuity in the solution,
and hence the values given in the table for 00 = nl2 simply indicate the trend.

The results given for case F show the effect of the radial distance c (Fig. 1) on the stress
intensity factors k i and the cleavage angle <Pc for a fixed value of the crack angle, 00 = 40°
It is seen that as c increases the results approach the values corresponding to the infinite
plane.
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Table 2. The stress intensity factors and the probable crack propagation angles for the crack orientations,
the material combinations, and the loads shown in Table 1

(k; = kdpova;;, i = 1,2, ao = (b -a)/2)

Case flo 0 200 40° 600 800 900

k~(a) 0·9349 0·9307 0·9216 0·9144 0·9143 0·9160
k~(b) 0·9617 0·9572 0·9457 0·9318 0·9206 0·9160
k;(a) 0 0·0025 oo1סס·0 -0'0071 -0,0153 -0,0188

A 1 k;(b) 0 0·0125 0·0209 0·0237 0·0215 0·0188
.pc(a) 0 -0,306 -0,001 0·889 1·911 2-342
.pc(b) 0 -1,492 -2'531 -2,915 -2,666 -2,342

k~(a) 0 0·0223 0·0338 0·0333 0·0251 0·0191
k~(b) 0 0·0030 0·0020 -0,0042 -0,0142 -0,0191

A 2
k;(a) 0·9349 0'9395 0·9492 0·9580 0·9644 0·9663
k;(b) 0·9617 0·9629 0·9655 0'9671 0·9672 0·9663
.pc(a) -70'53 -70,08 -69,85 -69,87 -70,03 -70,15
.pc(b) -70,53 -70,47 -70'49 -70,61 -70,81 -70,91

k~(a) 1·0780 1·0929 1·1165 1·1389 1'1459 1·1420
ki(b) 1'0464 1·0571 1·0796 1·1091 1·1344 1·1420

8 1
k2(a) 0 -0,0098 -0,0077 -0,0062 0·0242 0·0321
k;(b) 0 -0,0220 -0'0377 -0'0433 -0,0382 -0,0321
.pc(a) 0 1·024 0'793 -0,623 -2,417 -3,210
.pc(b) 0 2·384 3-985 4·462 3-852 3·210

k~(a) 0 -0,0386 -0'0586 -0·0566 -0,0399 -0,0291
k~(b) 0 -0,0082 -0'0092 -0,0002 0·0184 0·0291

8 2 k;(a) 1·0780 1·0749 1'0590 1·0468 1·0400 1·0390
k;(b) 1·0464 1·0465 1'0418 1·0385 1·0376 1'0390
.pc(a) -70,53 -71,22 -71'59 -71,56 -71,26 -71,06
.pc(b) -70,53 -70,68 -70'70 -70'53 -70,19 -70,00

k~(a) 1·0913 1·1049 1'1349 1·1604 1·1677 1·1621
k~(b) 1·0539 1'0644 1-0918 1·1257 1·1543 1·1621

C1
k;(a) 0 -0,0114 -0'0093 0·0067 0·0276 0·0367
k;(b) 0 -0,0251 -0'0431 -0,0498 -0,0439 -0,0367
.pc(a) 0 1'184 0·941 -0'663 -2,703 -3-61
.pc(b) 0 2'700 4'512 5·041 4·339 3-61

k~(a) 0 -0,0440 -0'0669 -0,0646 -0,0453 -0,0331
k~(b) 0 -0,0095 -0,0109 -0,0003 0·0205 0·0331

C2
k2(a) 1·0913 1.0842 1'0686 1·0540 1·0452 1·0440
k;(b) 1·0539 1·0523 1'0484 1·0444 1'0426 1'0440
.pc(a) -70,53 -71.31 -71,73 -71,70 -71-36 -71,05
.pc(b) -70'53 -70,70 -70'73 -70'54 -70'15 -69,93

k~(a) 0·9349 0·9201 0'8749 0·8034 0·7334
ki(b) 0·9617 0·9523 0·9217 0·8613 0·7753
k;(a) 0 0·0018 -0'0093 -0,0539 -0,1297

D 1
k;(b) 0 0·0139 0'0319 0·0586 0·0960
.pc(a) 0 -0,227 1·221 7-608 18·96
.pc(b) 0 -1,670 -3'956 -7'701 -13,72
W(a) 0·8740 0·8465 0'7655 0·6484 0·5546 0·5180
Web) 0·9248 0·9070 0'8505 0·7483 0·6104 0'5180
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Table 2-Continued

Case 80 0 20° 40' 60° 80 90

k;(a) 0 0'0259 0·0608 0·1124 0·1547
k;(b) 0 0·0029 -0'0008 -0,0258 -0,0919
k2(a) 0'9349 0·9299 0·9160 0·8910 0·8012

D2
k2(b) 0·9617 0·9586 0·9493 0·9305 0·8598
¢Jc(a) -70'53 -70,00 -69,27 -68.14 -66,89
¢Jc(b) -70'53 -70,47 -70,55 --71 '06 -72'58
W(a) 0·8740 0·8654 0·8427 0·8064 0·6658 0·5180
Web) 0·9248 0·9188 0·9012 0·8664 0.7476 0'5180

k;(a) 1·0913 1·1222 1·2437 1·6218 4·0850 -~oc)

k;(b) 1·0539 1·0725 1·1468 ],3871 3·0851 ,-",+CJ:J

£, k;(a) 0 -0,0121 -0,0041 0·1125 1·4986 ----+00

k;(b) 0 -0,0287 -0,0762 -0·2099 -1,2715 ..~--- Cf)

¢Jc(a) 0 1·235 0·373 - 7·859 -33,458
¢Jc(b) 0 3·063 7'540 16·494 36'013

k;(a) 0 -0,0524 -0,1357 -0,3262 -- 0·9288 --;0-- -~ a:~

k;(b) 0 -0,0104 -0,0151 0·0056 0·1336 -,~c£'

£2
k;(a) 1·0913 1·0979 1·1177 1·1381 1·2538 ----.roc
k;(b) 1·0539 1·0589 1·0767 1·1187 1·2702 --)-0:)

¢Jc(a) -70'53 -71,44 -72-86 -76,08 --84,91
¢Jc(b) -70'53 -70,72 --70·80 -70,43 -68,53

ciao ],1 1·2 1·4 1·6 2·0 4·0

k;(a) 2·5263 1·9959 1'5947 1·4150 1·2437 1·0543
k;(b) 1·4694 1·3772 1·2764 1·2168 1·1468 ],0423

F,
k;(a) 0·2103 0·1091 0·0400 0·0141 -0·0041 -0·0073
k;(b) -0,2911 -0,2308 -0,1625 -0']221 --0,0762 --0,0171
¢Jc(a) -9,388 -6,219 -2-870 --1,144 0·373 0·796
¢Jc(b) 20·92 18·08 14·08 11·24 7·540 1·882

k;(a) -1,0299 -0·6667 -0·3819 -0,2538 -0,1357 -0,0227
k;(b) -0,0716 -0,0491 -0,0300 -0,0219 -0,0151 -0,0066

F2
k2(a) 1·6185 1·4100 1·2580 1'1884 1,]]77 1·0288
k;'(b) 1·2639 ],2054 1,]461 1·1134 1·0767 1·0227
¢Jc(a) -82,94 -79,73 -76,41 -74,65 -72-86 -70,95
¢Jc(b) -71,61 -71,31 -- 7],03 -70'91 -70,80 70'65

(42)(i,j,m=I,2; cl =a,c2 =b)

The results given in Table 2 may be used to obtain the stress intensity factors in an arbi
trarily loaded two-phase composite medium with an arbitrarily oriented crack provided the
medium is loaded sufficiently far away from the crack region so that in the perturbed
problem the crack surface tractions PI (r) and P2(r) can be approximated by uniform stresses.
Thus if pdr) + ip2(r) = PI + iP2 = constant, we find

_ / __ 2 ,
ki(cm) - -v ao I kij(cm)Pj,

I

where in ki j i = I and i = 2 respectively correspond to the normal and the shear components
of the stress intensity ratio given in Table 2 as k; and k;, and j = I and j = 2 respectively
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refer to the external loads P1 =F 0, P2 = 0 and P1 =0, P2 =F O. For example, if the medium is
loaded parallel to the interface away from the crack region, the uniform stresses in the
uncracked material will be related by

'rlrl1(r,O) = '£"2'9(r, 0) = 0,

1 - v/ 1 - v/
--- t 199(r, 0) = --- '299(r, 0),

£1 £2

'19llr,0) = 0"1' '296(r, 0) = 0"2' (43)

where (Tl and (T2 are constant. In this case the stress intensity factors may be expressed as

k1J(C
m) = k1(cm) = k 11 (cm)cos 2 00 + k12(c",)sin 00 cos 00 ,

0"2 ao

k 2(;?- = kZ(Cm) = kZ1(cm)Cos2 00 + kZ2(cm)sin 00 cos 00 , (m = 1,2; c1 = a, c2 = b).
(T2 V ao

(44)

to
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o 30 60 a. 90

Fig. 2. Stress intensity factor ratios in bonded half planes containing an arbitrarily oriented
crack and loaded parallel to the interface (EdE2 = 22,22, VI = O' 3, V2 = O' 35, d = 2ao =

b - a = constant).
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Fig. 3. Cleavage angles and the strain energy release rates for the bonded planes shown in
Fig. 2 (E,fEz =22'22, VI = 0,3, Vz =0·35, d= 2ao = b - a= constant).



582 F. ERDOGAN and O. AKSOGAN

Figures 2-9 show some of the results obtained from (44). Figures 2 and 3 give the results for
the material combination and the crack orientation corresponding to case A in Table I.
Similarly, (aside from the external loads which are given by (43)), Figs. 4 and 5 correspond
to the case B, Figs. 6 and 7 correspond to the case C, and Figs. 8 and 9 correspond to the
case D. Note that the probable cleavage angles cPc shown in Figs. 3, 5, 7 and 9 are all
negative and the direction of crack initiation is approximately perpendicular to the direction
of the external load. The angle cPc = 700 .53 shown in the figures corresponds to the cleavage
angle for an infinite plane containing a crack and subjected to a uniform shear at infinity
parallel and perpendicular to the plane of the crack [13]. For a fixed external load, the figures
clearly show the effect of the crack orientation on the stress intensity factors, and hence, on
the fracture resistance of the composite medium.

12

08

0.4

o
o 30 60 80 90

Fig. 4. Stress intensity factor ratios in bonded half planes containing an arbitrarily oriented
crack and loaded parallel to the interface (EdE2 = 0,045, "1 = O' 35, "2 = O' 3, d =2ao =

b - a = constant).
12

W
2.

08

0,4

o
o 30 60 ~ 90

Fig. 5. Cleavage angles 4>c and the strain energy release rates W 2 for the bonded planes shown
in Fig. 4 (E1/E2 = 0,045, "1 = 0'35, "2 = 0'3, d= 200 = b - a = constant).
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1.2

583

08
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o 30 60 eo 90

Fig. 6. Stress intensity factor ratios in a half plane containing an arbitrarily oriented internal
crack and loaded parallel to the free boundary (d = 2ao = b - a = constant).
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Fig. 7. cPc and W2 for the half plane shown in Fig. 6 (d = 2ao = b - a = constant).
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1.0

0.5

o
o 30 60 e. 90

Fig. 8. Stress intensity factor ratios in bonded half planes containing an arbitrarily oriented
crack and loaded parallel to the interface (EdE2 = 22,22, v, = 0,3, V2 = 0'35, C = 2ao =

b - a = constant).
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Fig. 9. ePc and W2 for the bonded planes shown in Fig. 8 (E,/E2 = 22·22, v, = 0'3, V2 = 0·35,
C = 2ao = b - a = constant).
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A6eTpslIT-PaccMaTPHBaeTC.ll np06neMa 3JIaCfOCTaT:lN.ecKol{ IIJIOCKOCTIf ,QBYX CB.ll3aHHbIX
nOJIYIUlOCKOCTeil c npOH3BOJIbHO pacnOJIOlKeHHoil: Tpe~HHOil: B6JIH3R rpamm.bI pa3,lJ;eJIa.
npe06pa30BaliHeM McmmHa np06JICMa cjJ0PMYJIHPYCTCH BBH,Qe CHHrYJIJIpHbIX HHrerpanbHblx
YPaBHeHHit npH nOMOII.(H ypaBHeHHil: pa3pemaKlTCR BorrpOCbI OpHeHTllUHH pa3JIH'iHhlX Tpe
~HH, KOM6aHamui MarepaanoB a HapYlKHblx HarpY30K. QHCJIeHHble pe3YJIbTaTbI rrpHBe.aeHHble
B:nol{ pa60Te BKJIKl'laKlT Ko3cjJclJHUHeHT CHJIbI HanpJIlKeHHR, K03c1J.pHQHeHT BbI)J;eJIeHHH IIOTeH
mranbHoil: ::lHepnm ,QeQJopMaUHH If B03MOJKHble yrJIbI paCmeIIJICHHH, ,llalO~HC HanpaBJICHHe
Pa3BHTHlO TpeUlHH.


